7373170279850

JEAN-MARC DESHOUILLERS, FRANÇOIS HENNECART, BERNARD LANDREAU, WITH AN APPENDIX BY I. GUSTI PUTU PURNABA

Abstract

We conjecture that $7,373,170,279,850$ is the largest integer which cannot be expressed as the sum of four nonnegative integral cubes.

Introduction

We consider one aspect of Waring's problem for cubes, namely the representation of nonnegative integers as sums of nonnegative integral cubes. Dickson [6] showed in 1939 that every positive integer is the sum of 8 nonnegative cubes, with the only exceptions being 23 and 239. Linnik [9] proved that every sufficiently large integer is a sum of 7 cubes; Watson [12] simplified the proof and McCurley [3] gave an effective and explicit proof of this result.

Using the traditional symbol $G(3)$ to denote the smallest n such that every sufficiently large integer is a sum of n nonnegative cubes, Linnik's result may be reformulated as $G(3) \leq 7$. On the other hand, it is easy to see that $G(3) \geq 4$: indeed, cubes are congruent to 0,1 or -1 modulo 9 , so that integers which are congruent to 4 or 5 modulo 9 require at least 4 cubes. Moreover, Davenport [4] has shown that up to x, every integer is a sum of 4 nonnegative cubes with the exception of at most $o(x)$ terms.

We say that an integer is C_{k} if it can be represented as a sum of k nonnegative cubes. Western [13] gave heuristic support to the conjecture $G(3)=4$ and also conjectured that the largest integer which is C_{5} and not C_{4} is located between 10^{12} and 10^{14}. We present here some support for the following conjecture:

Conjecture 1. The integer $N=7,373,170,279,850$ is the largest integer which cannot be expressed as the sum of four nonnegative integral cubes.

Work of Bohman and Fröberg [2] and Romani [10] suggests that there are exactly 15 integers which are C_{8} and not C_{7}, the largest of which is 454 ; exactly 121 integers which are C_{7} and not C_{6}, the largest being 8,042 ; and 3,922 integers which are C_{6} and not C_{5}, the largest being $1,290,740$. Bohman and Fröberg also gave some arguments in favour of the conjecture $G(3)=4$ and proposed the estimate 112 millions for the number of integers which are C_{5} and not C_{4}. Our computations lead us to the following:

[^0]Conjecture 2. There are exactly $113,936,676$ positive integers which are not the sum of four nonnegative integral cubes.

1. The method

The basic principle is to find N_{1} such that N_{1} is not C_{4} but all the integers in the interval $\left(N_{1}, \kappa N_{1}\right]$, for some "security coefficient" κ, are C_{4}, and then declare N_{1} to be the candidate for being the largest integer which is not C_{4}.

Our choice for κ was 10 ; we are thankful to P. Purnaba for having performed many simulations on pseudo-cubes sequences to provide us with a decent expectation that 10 is a secure choice (cf. the Appendix). Another argument in favour of this choice comes from the computations we performed on actual cubes.

However, this principle cannot be implemented in such a direct way: it is easily checked that $7,373,170,279,850$ is not C_{4} (we are thankful to P . Zimmermann, who checked this point independently of us). Thus, implementing our principle would require us to check that all integers between $N+1$ and $7.4 \cdot 10^{13}$ are C_{4}, computations that cannot be performed with current computers and algorithms.

We modify this basic principle by inserting the irregularity of the distribution of cubes in arithmetic progressions, keeping the same security coefficient $\kappa=10$. As we already noticed, cubes are badly distributed modulo 9: the number $\rho(k, 9)$ is the number of solutions of the congruence

$$
k_{1}^{3}+k_{2}^{3}+k_{3}^{3}+k_{4}^{3} \equiv k \quad \bmod 9,
$$

are given by the following table.

k	0	± 1	± 2	± 3	± 4
$\rho(k, 9) / 9^{3}$	$19 / 9$	$16 / 9$	$10 / 9$	$4 / 9$	$1 / 9$

This means that it is easier to represent, as C_{4}, integers which are not congruent to ± 4 modulo 9 . We give in section 2 the results for those cases; let us simply mention here that we found that the number $M=75,377,772,852$ is not C_{4} but that any integer between $M+1$ and $8.8 \cdot 10^{11}$, which is not congruent to ± 4 modulo 9 , is C_{4}. We are thus left with checking integers up to $7.4 \cdot 10^{13}$ which are congruent to ± 4 modulo 9 : we have thus won a factor $2 / 9, \ldots$ which is still too large.

For the remaining classes modulo 9 , we went one step further in the arithmetic and considered classes modulo 7 (since 3 divides ($7-1$), cubes are badly distributed modulo 7). Here again, some classes could be dealt with in a reasonable time (for classes modulo ± 4 modulo 9 and $0, \pm 1, \pm 2$ modulo 7 , the largest non- C_{4} found turned out to be around $1.4 \cdot 10^{12}$). In the four remaining classes, the largest exceptions turned out to be between $5 \cdot 10^{12}$ and $7.4 \cdot 10^{12}$. This part is presented in section 3.

Section 4 deals with the conjectured number of non- C_{4} numbers (Conjecture 2). In section 5 , we give some heuristic support to our conjectures by using the arithmetic refinement of the Erdős-Rényi model we introduced in [5]. We finally give an application of our computations to the determination of an interval containing only C_{5} numbers.

We close this section with two remarks concerning the computations. To determine which elements in a given interval are C_{4}, we represent them by their address in a string of bits: initially, we give the value 0 to these bits; we build strings representing C_{2} numbers and add those strings to give the value 1 to one bit as soon as its address is seen as a sum of two C_{2} numbers.

At the end of the process, we check which bits are 0 and which are 1 : when all are 1 , then all the integers in the interval are C_{4}. The reader will easily see how to modify this algorithm to take into account congruence conditions. Computations have been performed on DEC-Alpha or SUN-Sparc stations of different laboratories. We are specially thankful to the Laboratoire de Mathématiques Appliquées de Bordeaux for helping in getting access to a CRAY-t3d computer (CEA Grenoble) as well as to a DEC-Alpha station. The total CPU time involved is around 10,000 hours, and the computations were performed over a full year.

2. The high residue classes modulo 9

In what follows, an exception will mean a positive integer which is not a sum of four nonnegative cubes.

We first look at the residues classes $0, \pm 1, \pm 2, \pm 3$ modulo 9 . In these classes, the likely exception N_{0} is not too large, and the computations, which consist in checking that any integers between N_{0} and $10 N_{0}$ are sums of four cubes, are swiftly performed.

The largest exceptions N_{0} that we obtained and the corresponding sifted intervals are given in Table 1. As expected, these numbers are congruent to ± 3 modulo 7, which as a matter of fact are the lowest classes modulo 7 .

Table 1. The last exception in the classes $0, \pm 1, \pm 2, \pm 3$ modulo 9 .

class	$\rho(k, 9) / 9^{3}$	largest non-C 4_{4} integer	mod 7	checking up to
0	$19 / 9$	396953532	3	$4,5 \cdot 10^{11}$
1	$16 / 9$	252716950	3	$3 \cdot 10^{9}$
2	$10 / 9$	1761425102	3	$3.7 \cdot 10^{10}$
3	$4 / 9$	44322060990	4	$5.3 \cdot 10^{11}$
6	$4 / 9$	75377772852	4	$8.8 \cdot 10^{11}$
7	$10 / 9$	4045088338	4	$4.5 \cdot 10^{10}$
8	$16 / 9$	505945682	4	$5.4 \cdot 10^{9}$

As expected, we notice at once that the size of the largest exception found in a given class k strongly depends on the number $\rho(k, 9)$.

Table 2. The ten largest exceptions in the classes $0, \pm 1, \pm 2, \pm 3$ modulo 9.

$0[9]$	$1[9]$	$2[9]$	$3[9]$
109563030	130242934	905760614	30018581436
114717348	130576555	931528658	30205280802
133218684	134916274	934479389	30756454158
133262559	147350458	1017344108	30794631438
133297182	152177806	1021218446	31702361898
136987722	171820702	1123934213	33141245610
146692746	173788444	1155472427	41155522446
152955828	198367831	1189684226	41319931908
188204580	204605740	1680416174	41918435499
396953532	252716950	1761425102	44322060990

Table 2 (continued)

-3 [9]	-2 [9]	-1 [9]
39129270513	1043547838	132173261
40086582225	1049202214	133045622
40686577404	1072947949	148532723
43149463206	1090092580	165687092
43234286343	1135860478	178270145
45241168038	1146854860	192810230
48420314610	1148123959	218223134
57604173756	1216888054	230528546
66945773058	1312833274	249325766
75377772852	4045088338	505945682

Table 2 gives an idea of the distribution of the exceptions in every class, and in particular shows that two consecutive exceptions in a given class are relatively closed, independently of the class.

3. The laborious cases: the classes 4 and 5 modulo 9

For these two classes, our computations means were not adapted to obtain the likely exceptions in the same way. We went around these difficulties by considering the 14 residue classes modulo 63 coming from the classes ± 4 modulo 9 , and by applying the same algorithm to each of them.

In Table 3, we show the fourteen classes modulo 63 to be studied.
Table 3. The low residues modulo 63.

$\bmod 7^{\bmod 9}$	4	5
0	49	14
1	22	50
2	58	23
3	31	59
4	4	32
5	40	5
6	13	41

We first calculate the number of solutions to the congruence

$$
k_{1}^{3}+k_{2}^{3}+k_{3}^{3}+k_{4}^{3} \equiv k \quad \bmod 7,
$$

denoted by $\rho(k, 7)$, which is given in the following table.

k	0	± 1	± 2	± 3
$\rho(k, 7) / 7^{3}$	$595 / 343$	$336 / 343$	$378 / 343$	$189 / 343$

Looking at this table, we may expect that the last exceptions should be congruent to ± 3 modulo 7 , and thus belong to classes ± 4 or ± 31 modulo 63 , which will be called the low classes modulo 63 .

In the following subsections, we collect the largest exceptions in the fourteen classes, setting together classes having the same 4 -cubes representation coefficient modulo 63 . We shall notice that these exceptions essentially belong to the low classes modulo 13 (that is $1,5,8,12$), modulo 19 (that is $2,3,5,14,16,17$) and modulo 8 (that is $2,4,6$).
3.1. The residue class $\mathbf{0}$ modulo 7. The classes are 14 and 49 modulo 63: the representation ratio is $\mathfrak{s}(k, 63)=\rho(k, 63) / 63^{3}=(1 / 9) \times(595 / 343)=0.192 \ldots$

Table 4. The last exception in the classes 14 and 49 modulo 63.

class	largest non-C $_{4}$ integer	mod 13	checking up to
14	83593932170	8	$1.132 \cdot 10^{12}$
49	96127145590	8	10^{12}

Table 5. The ten largest exceptions in class 14 and 49 modulo 63.

class 14	$[13]$	$[8]$	$[19]$	class 49	$[13]$	$[8]$	$[19]$
69453814262	1	6	10	59419179652	1	4	16
70862250074	5	2	3	61296801916	12	4	5
72465894914	10	2	3	65244097030	8	6	13
74436498878	1	6	5	67505819458	12	2	4
74928861266	12	2	3	72110490340	5	4	5
77461820870	5	6	10	73731109018	8	2	3
78715215194	5	2	16	74583499522	12	2	5
80564235458	5	2	16	76969316956	12	4	17
80912821010	8	2	16	85533027412	1	4	16
83593932170	8	2	10	96127145590	8	6	2

3.2. The residue classes $\mathbf{1}$ and $\mathbf{- 1}$ modulo 7. The classes are $13,22,41$ and 50 modulo 63: the representation ratio is $\mathfrak{s}(k, 63)=\rho(k, 63) / 63^{3}=(1 / 9) \times(336 / 343)=$ 0.108...

Table 6. The last exception in the classes $13,22,41$ and 50 modulo 63.

class	largest non-C 4_{4} integer	mod 13	checking up to
13	907751255494	5	$9.2 \cdot 10^{12}$
22	788129237722	8	$8.6 \cdot 10^{12}$
41	1427500392170	8	$14.364 \cdot 10^{12}$
50	936140172206	5	$9.41 \cdot 10^{12}$

Table 7. The ten largest exceptions in the classes $13,22,41$ and 50 modulo 63.

class 13	$[13]$	$[8]$	$[19]$	class 22	$[13]$	$[8]$	$[19]$
515415341713	12	1	1	463699078942	8	6	3
515716372660	8	4	2	466743009244	5	4	3
517437367537	12	1	16	470521253749	1	5	2
521809634254	12	6	14	521760696430	12	6	15
591096733492	5	4	6	526065260638	8	6	14
632123355982	1	6	16	542997708394	11	2	11
644670291838	1	6	17	560084910988	5	4	17
660658929916	11	4	3	576155440372	5	4	17
663859461082	12	2	17	666721591726	8	6	16
907751255494	5	6	2	788129237722	8	2	17

Table 7 (continued)

class 41	$[13]$	$[8]$	$[19]$	class 50	$[13]$	$[8]$	$[19]$
540717468836	12	4	5	505720130378	8	2	5
541298339798	8	6	3	527295430670	8	6	17
542474783339	8	3	5	528887658902	5	6	15
556064232170	5	2	5	546630271790	5	6	14
559284113660	12	4	2	558710089988	11	4	17
563987764094	1	6	5	572694654722	8	2	14
599435462660	8	4	16	588152293646	8	6	2
767912798498	1	2	16	725000004338	12	2	3
856645138166	12	6	5	858098874326	5	6	14
1427500392170	8	2	17	936140172206	5	6	5

3.3. The residue classes 2 and -2 modulo 7. The classes are $5,23,40$ and 58 modulo 63: the representation ratio is $\mathfrak{s}(k, 63)=\rho(k, 63) / 63^{3}=(1 / 9) \times(378 / 343)=$ 0.122....

Table 8. The ten largest exceptions in the classes $13,22,41$ and 50 modulo 63.

class	largest non-C $_{4}$ integer	mod 13	checking up to
5	706796978900	12	$7.071 \cdot 10^{12}$
23	913105904972	1	$9.141 \cdot 10^{12}$
40	515338220164	1	$5.163 \cdot 10^{12}$
58	647984206102	12	$6.491 \cdot 10^{12}$

Table 9. The ten largest exceptions in the classes 5, 23, 40 and 58 modulo 63.

class 5	[13]	[8]	[19]	class 23	[13]	[8]	[19]
367699306658	8	2	5	408491662658	1	2	10
368491257545	8	1	17	416597533340	1	4	5
375244504556	12	4	2	425893618292	12	4	6
378197041262	1	6	16	443781861791	8	7	5
384438283052	5	4	16	452739991118	12	6	3
401492794379	1	3	3	507587062334	1	6	17.
409896282794	11	2	2	519302630660	8	4	3
455907401906	8	2	2	559222247390	1	6	12
506893225298	5	2	3	680757914426	5	2	3
706796978900	12	4	14	913105904972	1	4	16
class 40	[13]	[8]	[19]	class 58	[13]	[8]	19]
336882895060	10	4	7	$\begin{array}{lllll}353 & 850 & 173 & 266\end{array}$	5	2	15
345086371642	12	2	14	$\begin{array}{llllllllllll}370 & 423 & 987 & 978\end{array}$	5	2	5
352712730046	1	6	3	$\begin{array}{lllll}372 & 336 & 481 & 876\end{array}$	8	4	16
382298697373	8	5	5	$\begin{array}{lllll}378 & 914 & 738 & 827\end{array}$	1	3	17
402682599814	1	6	16	$\begin{array}{lllll}404 & 782 & 452 & 580\end{array}$	12	4	9
408265707946	5	2	5	$\begin{array}{lllll}415 & 747 & 301 & 566\end{array}$	12	6	10
410885502214	5	6	2	$\begin{array}{lllll}454 & 167 & 517 & 162\end{array}$	8	2	16
420483613324	8	4	14	$\begin{array}{lllll}515 & 331 & 316 & 642\end{array}$	12	2	17
465966625045	12	5	17	$\begin{array}{lllll}586 & 783 & 317 & 388\end{array}$	8	4	2
515338220164	1	4	3	647984206102	12	6	2

3.4. The low classes modulo 63 and the likely largest exception. We now deal with the four remaining classes, those corresponding to the classes ± 3 modulo 7 and ± 4 modulo 9 . As expected the examination of these classes has revealed the probable largest number not representable as a sum of four cubes: $7,373,170,279,850$. It was found in the class 32 modulo 63 .

The representation ratio for the classes $\pm 4, \pm 31$ modulo is $\mathfrak{s}(k, 63)=\rho(k, 63) / 63^{3}=(1 / 9) \times(189 / 343)=3 / 49=0.061 \ldots$

Table 10. The last exception in the classes $4,31,32$ and 59 modulo 63 .

class	largest non-C 4_{4} integer	classe mod 13	checking up to
4	6496802093380	1	$6.5 \cdot 10^{13}$
31	5284099948018	8	$5.35 \cdot 10^{13}$
32	7373170279850	11	$7.39 \cdot 10^{13}$
59	6021018973490	1	$6.3 \cdot 10^{13}$

Table 11. The ten largest exceptions in the classes 4, 31, 32 and 59 modulo 63.

class 4				$[13]$	$[8]$	$[19]$		class 31				$[13]$	$[8]$	$[19]$	
4	101	746	020	978	8	2	3	4	097	950	646	674	1	2	16
4	176	071	432	950	1	6	3	4	243	508	161	924	5	4	2
4	258	171	417	378	8	2	3	4	351	566	387	514	8	2	3
4	260	747	448	381	8	5	5	4	455	736	568	986	1	2	5
4	261	453	542	490	1	2	2	4	626	872	001	454	1	6	17
4	335	278	405	602	1	2	5	4	662	046	058	890	12	2	14
4	960	851	010	042	5	2	3	4	799	676	641	980	12	4	4
5	041	706	085	742	1	6	3	4	986	551	506	702	12	6	2
5	269	052	852	662	1	6	14	5	263	158	954	910	12	6	17
6	496	802	093	380	1	4	3	5	284	099	948	018	8	2	17
	class				32		$[13]$	$[8]$	$[19]$			class	59		$[13]$
4	075	773	601	316	1	4	5	3	802	208	355	158	5	6	$[19]$
4	086	898	600	082	12	2	2	3	825	977	414	234	1	2	2
4	364	287	298	060	1	4	16	3	870	821	254	730	1	2	9
4	592	346	735	722	5	2	16	3	889	185	641	834	12	2	3
4	639	786	626	164	1	4	17	4	058	748	783	302	5	6	17
4	668	204	750	962	12	2	14	4	145	452	151	270	1	6	2
5	521	284	141	881	1	1	5	4	798	029	384	914	12	2	17
5	676	158	919	722	5	2	3	4	798	065	694	586	8	2	5
6	196	484	961	230	5	6	3	5	368	106	543	558	5	6	3
7	373	170	279	850	11	2	6	6	021	018	973	490	1	2	16

4. THE NUMBER OF EXCEPTIONS

In Table 12, we have gathered for each class modulo 63 the probable number of integers which cannot be written as a sum of four nonnegative cubes. This leads to Conjecture 2 stated in the introduction.

Looking at Table 12, we observe that there are more exceptions in the class 5 modulo 9 than in the class 4 , for a given class modulo 7 . This phenomenon can be

Table 12. The likely number of exceptions by class modulo 63 .

non-C 4 by class $\bmod 63$	0 [7]	1 [7]	2 [7]	3 [7]	4 [7]	5 [7]	6 [7]	total by class $\bmod 9$
0 [9]	$\begin{gathered} \hline \hline 36 \\ 0[63] \\ \hline \end{gathered}$	$\begin{gathered} \hline \hline 334 \\ 36[63] \\ \hline \end{gathered}$	$\begin{gathered} \hline \hline 212 \\ 9[63] \\ \hline \end{gathered}$	$\begin{gathered} \hline 2565 \\ 45 \text { [63] } \\ \hline \end{gathered}$	$\begin{gathered} \hline \hline 2634 \\ 18[63] \\ \hline \end{gathered}$	$\begin{gathered} 256 \\ 54[63] \\ \hline \end{gathered}$	$\begin{gathered} \hline 296 \\ 27[63] \\ \hline \end{gathered}$	6333
1 [9]	$\begin{gathered} 62 \\ 28[63] \\ \hline \end{gathered}$	$\begin{gathered} 471 \\ 1[63] \\ \hline \end{gathered}$	$\begin{gathered} 382 \\ 37[63] \\ \hline \end{gathered}$	$\begin{gathered} 4119 \\ 10 \text { [63] } \\ \hline \end{gathered}$	$\begin{gathered} 4006 \\ 46 \text { [63] } \\ \hline \end{gathered}$	$\begin{gathered} 407 \\ 19[63] \\ \hline \end{gathered}$	$\begin{gathered} 555 \\ 55[63] \\ \hline \end{gathered}$	10002
2 [9]	$\begin{gathered} \hline 391 \\ 56[63] \\ \hline \end{gathered}$	$\begin{gathered} \hline 2551 \\ 29[63] \\ \hline \end{gathered}$	$\begin{gathered} \hline 1773 \\ 2[63] \end{gathered}$	$\begin{gathered} \hline 17329 \\ 38 \text { [63] } \end{gathered}$	$\begin{gathered} \hline 17441 \\ 11 \text { [63] } \end{gathered}$	$\begin{gathered} \hline \hline 2088 \\ 47[63] \end{gathered}$	$\begin{gathered} 2785 \\ 20[63] \end{gathered}$	44358
3 [9]	$\begin{gathered} \hline 8828 \\ 21[63] \\ \hline \end{gathered}$	$\begin{gathered} \hline 52346 \\ 57[63] \\ \hline \end{gathered}$	$\begin{gathered} \hline 35949 \\ 30 \text { [63] } \\ \hline \end{gathered}$	$\begin{gathered} \hline 307600 \\ 3 \text { [63] } \\ \hline \end{gathered}$	$\begin{aligned} & \hline 308974 \\ & 39[63] \\ & \hline \end{aligned}$	$\begin{gathered} \hline 37884 \\ 12[63] \\ \hline \end{gathered}$	$\begin{aligned} & \hline 53794 \\ & 48 \text { [63] } \\ & \hline \end{aligned}$	805375
4 [9]	$\begin{aligned} & \hline 644283 \\ & 49 \text { [63] } \\ & \hline \end{aligned}$	$\begin{gathered} \hline 3747040 \\ 22[63] \\ \hline \end{gathered}$	$\begin{gathered} \hline 2536522 \\ 58[63] \\ \hline \end{gathered}$	$\begin{gathered} \hline \hline 21167119 \\ 31[63] \\ \hline \end{gathered}$	$\begin{gathered} \hline 21169677 \\ 4[63] \\ \hline \end{gathered}$	$\begin{gathered} \hline 2618012 \\ 40 \text { [63] } \\ \hline \end{gathered}$	$\begin{gathered} \hline 3799510 \\ 13 \text { [63] } \\ \hline \end{gathered}$	55682163
5 [9]	$\begin{aligned} & \hline 663407 \\ & 14 \text { [63] } \\ & \hline \end{aligned}$	$\begin{gathered} \hline \hline 3870947 \\ 50[63] \\ \hline \end{gathered}$	$\begin{gathered} \hline 2572186 \\ 23[63] \\ \hline \end{gathered}$	$\begin{gathered} \hline \hline 21402004 \\ 59[63] \\ \hline \end{gathered}$	$\begin{gathered} \hline \hline 21403611 \\ 32[63] \\ \hline \end{gathered}$	$\begin{gathered} \hline 2656879 \\ 5[63] \\ \hline \end{gathered}$	$\begin{gathered} \hline 3927902 \\ 41 \text { [63] } \\ \hline \end{gathered}$	56496936
6 [9]	$\begin{gathered} \hline 9197 \\ 42[63] \\ \hline \end{gathered}$	$\begin{gathered} \hline 57399 \\ 15[63] \\ \hline \end{gathered}$	$\begin{gathered} \hline 36666 \\ 51 \text { [63] } \\ \hline \end{gathered}$	$\begin{aligned} & \hline 315565 \\ & 24[63] \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 317700 \\ & 60[63] \\ & \hline \end{aligned}$	$\begin{gathered} \hline 38543 \\ 33[63] \\ \hline \end{gathered}$	$\begin{aligned} & \hline 58398 \\ & 6 \text { [63] } \\ & \hline \end{aligned}$	833468
7 [9]	$\begin{gathered} \hline \hline 415 \\ 7[63] \\ \hline \end{gathered}$	$\begin{gathered} \hline \hline 3025 \\ 43[63] \\ \hline \end{gathered}$	$\begin{gathered} 1789 \\ 16[63] \\ \hline \end{gathered}$	$\begin{gathered} \hline 18330 \\ 52 \text { [63] } \\ \hline \end{gathered}$	$\begin{gathered} \hline 18489 \\ 25 \text { [63] } \\ \hline \end{gathered}$	$\begin{gathered} \hline \hline 2074 \\ 61[63] \\ \hline \end{gathered}$	$\begin{gathered} \hline \hline 3325 \\ 34[63] \\ \hline \end{gathered}$	47447
8 [9]	$\begin{gathered} \hline 64 \\ 35[63] \\ \hline \end{gathered}$	$\begin{gathered} 592 \\ 8[63] \\ \hline \end{gathered}$	$\begin{gathered} \hline 368 \\ 44[63] \\ \hline \end{gathered}$	$\begin{gathered} 4295 \\ 17[63] \\ \hline \end{gathered}$	$\begin{gathered} 4238 \\ 53 \text { [63] } \\ \hline \end{gathered}$	$\begin{gathered} 420 \\ 26[63] \\ \hline \end{gathered}$	$\begin{gathered} 617 \\ 62[63] \\ \hline \end{gathered}$	10594
total by class $\bmod 7$	1326683	7734705	5185847	43238926	43246770	5356563	7847182	113936676

explained by the fact that up to a given bound x there are more cubes of the form $(3 k+1)^{3}$ than of the form $(3 k+2)^{3}$, and thus the number of sums of four cubes in the class 4 modulo 9 is greater than that in the class 5 modulo 9 . The numbers of exceptions in the respective classes naturally follow the same pattern. Similar but less pronounced phenomena also appear when comparing classes 3 and 4 modulo 7 , classes ± 1 modulo 9 , classes ± 2 modulo 9 or as well as classes ± 3 modulo 9 . Thus, it is not really an accident that the largest exception has been found in the class 32 modulo 63 .

We also may look at the residue modulo 13 of the largest exceptions. The number of solutions of the congruence

$$
k_{1}^{3}+k_{2}^{3}+k_{3}^{3}+k_{4}^{3} \equiv k \quad \bmod 13,
$$

denoted by $\rho(k, 13)$ takes the following values.

k	0	± 1	± 2	± 3	± 4	± 5	± 6
$\rho(k, 13)$	3133	1794	2106	2106	2457	1794	2457
$\rho(k, 13) / 13^{3}$	1.426	0.816	0.958	0.958	1.118	0.816	1.118

We observe that all the largest exceptions in the low classes $4,31,32,59$ modulo 63 are congruent to $1,5,8$ or 12 modulo 13 , except, unexpectedly, the largest one $7,373,170,279,850$: it belongs to the class 11 modulo 13 whose representation coefficient 0.958 is rather close to the minimum one 0.816 .

Similar remarks can be done when the modulus is 8 .

k	0	± 1	± 2	± 3	4
$\rho(k, 8)$	704	512	448	512	448
$\rho(k, 8) / 8^{3}$	1.375	1	0.875	1	0.875

As expected, the exceptions in tables $5,7,9$ and 11 are principally in the low class modulo 8 , that is 2,4 or 8 . Such a result is true for modulus 19 .

Last but not least, the size of the last exceptions as well as the total number of exceptions are consistent with the expectations of Western [13] and Bohman and Fröberg [2], as mentioned in the introduction.

5. Probabilistic study

We propose here some heuristics for supporting the numerical results that we previously obtained. We use an arithmetic refinement to the probabilistic model of Erdős and Rényi [7]; this trick has been introduced as part of the sums of 3 cubes program [5] and fits with the sums of four cubes.
5.1. The Erdős-Rényi model. Let (Ω, \mathcal{T}, P) be a probability space and $\left(\xi_{n}\right)_{n \geq 1}$ be a sequence of independent Bernoulli random variables such that

$$
P\left(\xi_{n}=1\right)=\alpha_{n} \quad \text { and } \quad P\left(\xi_{n}=0\right)=1-\alpha_{n}
$$

where $\alpha_{n}=1 /\left(3 n^{2 / 3}\right), n \geq 1$.
We construct a random sequences of integers $\left(\nu_{l}\right)_{l \geq 1}$ by considering the set of n for which $\xi_{n}=1$. We easily check that almost everywhere this sequence has infinitely many elements and satisfies $\nu_{l} \sim l^{3}$ when l tends to infinity.

Let R_{n} be the random variable counting the number of ways to represent n as a sum

$$
n=\nu_{l_{1}}+\nu_{l_{2}}+\nu_{l_{3}}+\nu_{l_{4}} \quad \text { with } \quad 1 \leq l_{1}<l_{2}<l_{3}<l_{4} .
$$

We then have

$$
R_{n}=\sum_{\mathbf{h}=\left(h_{1}, \ldots, h_{4}\right) \in \mathcal{H}} \xi_{h_{1}} \ldots \xi_{h_{4}},
$$

where

$$
\mathcal{H}=\mathcal{H}(n)=\left\{\mathbf{h}=\left(h_{1}, \ldots, h_{4}\right), 1 \leq h_{1}<\cdots<h_{4} \leq n, h_{1}+\cdots+h_{4}=n\right\} .
$$

Here we deal with the probability

$$
\begin{equation*}
P\left(R_{n}=0\right)=p\left(\bigcap_{\mathbf{h} \in \mathcal{H}} \overline{\left\{\xi_{\mathbf{h}}=1\right\}}\right) \tag{1}
\end{equation*}
$$

that n is not a sum of four distinct elements of $\left(\nu_{l}\right)$.
A way to bound it is to use Janson's inequality [8], leading, under the assumption $p(A) \leq \epsilon$ for any $A \in \mathcal{A}$, to

$$
\begin{equation*}
\prod_{A \in \mathcal{A}} p(\bar{A}) \leq p\left(\bigcap_{A \in \mathcal{A}} \bar{A}\right) \leq \prod_{A \in \mathcal{A}} p(\bar{A}) \exp \left(\frac{\delta}{1-\epsilon}\right) \tag{2}
\end{equation*}
$$

where $\delta:=\sum_{A_{1}, A_{2} \text { dependent }} p\left(A_{1} \cap A_{2}\right)$.
Moreover we have

$$
\prod_{A \in \mathcal{A}} p(\bar{A})=\prod_{\mathbf{h} \in \mathcal{H}}\left(1-\alpha_{\mathbf{h}}\right) \leq \exp \left(-\sum_{\mathbf{h} \in \mathcal{H}} \alpha_{\mathbf{h}}\right)=\exp (-\mu)
$$

where $\mu=\mu(n)=E R_{n}$.
Using Lemma 2.9 of [11], we easily obtain

$$
\begin{equation*}
\mu(n) \sim \gamma n^{1 / 3}, \quad \text { when } n \text { tends to infinity, } \tag{3}
\end{equation*}
$$

with $\gamma=\frac{\Gamma\left(\frac{1}{3}\right)^{3}}{3^{3} 4!}$.

Unfortunately the term δ is not negligible, and even has the same order as μ; thus Janson's inequality does not give a satisfactory bound.

Since our aim is only to give arguments in consideration of the results in the previous sections, we identify $P\left(R_{n}=0\right)$ to $e^{-\mu}$, as it would be the case if the events A were independent.

So if we use the estimate

$$
P\left(R_{n}=0\right) \asymp \exp \left(-\gamma n^{1 / 3}\right)
$$

we will obtain the value of n_{0} beyond which $P\left(R_{n}=0\right)<1 / n$. This condition holds for $n_{0}=3 \cdot 10^{8}$, a bad result in view of our computations. We now turn to the arithmetic model, which should give a much better estimate.
5.2. The arithmetic model. The modulus K being fixed, we consider for any k, $1 \leq k \leq K$, a sequence $\left(\xi_{n}^{(k)}\right)_{n \geq 1}$ of independent Bernoulli random variables such that

$$
P\left(\xi_{n}^{(k)}=1\right)=\alpha_{n}=1-P\left(\xi_{n}^{(k)}=0\right),
$$

where $\alpha_{n}=\frac{1}{3(n K)^{2 / 3}}$. This gives a family of K random increasing sequences $\left(\nu_{l}^{(k)}\right)_{l \geq 1}$ by considering for each k the integers n for which $\xi_{n}^{(k)}=1$. To each of them, we associate the sequence $\left(\mu_{l}^{(k)}\right)_{l \geq 1}$ defined by

$$
\mu_{l}^{(k)}=\nu_{l}^{(k)} K+m\left(k^{3}\right),
$$

where $m\left(k^{3}\right)$ is the smallest nonnegative integer congruent to k^{3} modulo K. The sequences $\left(\mu_{l}^{(k)}\right)_{l \geq 1}$ give a probabilistic model of the cubes in the arithmetic progressions modulo K : almost everywhere we have $\mu_{l}^{(k)} \sim(K l+k)^{3}$ when l tends to infinity.

Let k_{0} be a residue class modulo K, denote by $\mathbf{k}=\left(k_{1}, k_{2}, k_{3}, k_{4}\right)$ a solution to the congruence

$$
\begin{equation*}
k_{1}^{3}+k_{2}^{3}+k_{3}^{3}+k_{4}^{3} \equiv k_{0} \quad(\bmod K) \tag{4}
\end{equation*}
$$

and let $\mathcal{C}\left(k_{0}\right)$ be the set of solutions to (4), $\rho\left(k_{0}, K\right)$ its cardinality.
For $\mathbf{k}=\left(k_{1}, \ldots, k_{4}\right) \in \mathcal{C}\left(k_{0}\right)$ and n congruent to k_{0} modulo K, we denote by $R_{\mathbf{k}}(n)$ the number of representations of n as

$$
\begin{equation*}
n=\mu_{l_{1}}^{\left(k_{1}\right)}+\cdots+\mu_{l_{4}}^{\left(k_{4}\right)}, \tag{5}
\end{equation*}
$$

with

$$
\begin{equation*}
\mu_{l_{1}}^{\left(k_{1}\right)}<\cdots<\mu_{l_{4}}^{\left(k_{4}\right)} \tag{6}
\end{equation*}
$$

We finally denote by R_{n} the total number of representations obtained by summing over all solutions $\mathbf{k} \in \mathcal{C}\left(k_{0}\right)$,

$$
\begin{equation*}
R_{n}=\sum_{\mathbf{k} \in \mathcal{C}\left(k_{0}\right)} R_{\mathbf{k}}(n) \tag{7}
\end{equation*}
$$

The class k_{0} being fixed, for n large enough, $R_{\mathbf{k}}(n)$ denotes the number of representations of $N_{\mathbf{k}}:=\left(n-m\left(k_{1}^{3}\right)-\cdots-m\left(k_{4}^{3}\right)\right) / K$ as

$$
N_{\mathbf{k}}=\nu_{l_{1}}^{\left(k_{1}\right)}+\cdots+\nu_{l_{4}}^{\left(k_{4}\right)}
$$

with $\nu_{l_{1}}^{\left(k_{1}\right)}<\nu_{l_{2}}^{\left(k_{2}\right)}<\cdots<\nu_{l_{4}}^{\left(k_{4}\right)}$.

This implies that

$$
\begin{equation*}
R_{\mathbf{k}}(n)=\sum_{\mathbf{h} \in \mathcal{H}\left(N_{\mathbf{k}}\right)} \xi_{h_{1}}^{\left(k_{1}\right)} \ldots \xi_{h_{4}}^{\left(k_{4}\right)} \tag{8}
\end{equation*}
$$

where $\mathcal{H}(N)=\left\{\mathbf{h}=\left(h_{1}, \ldots, h_{4}\right), 1 \leq h_{1}<\cdots<h_{4} \leq N, h_{1}+\cdots+h_{4}=N\right\}$.
We then have

$$
\begin{equation*}
R_{n}=\sum_{\mathbf{k} \in \mathcal{C}\left(k_{0}\right)} \sum_{\mathbf{h} \in \mathcal{H}\left(N_{\mathbf{k}}\right)} \xi_{h_{1}}^{\left(k_{1}\right)} \ldots \xi_{h_{4}}^{\left(k_{4}\right)}=\sum_{\mathbf{k} \in \mathcal{C}\left(k_{0}\right), \mathbf{h} \in \mathcal{H}\left(N_{\mathbf{k}}\right)} \theta_{\mathbf{k}, \mathbf{h}} \tag{9}
\end{equation*}
$$

where $\theta_{\mathbf{k}, \mathbf{h}}=\xi_{h_{1}}^{\left(k_{1}\right)} \ldots \xi_{h_{4}}^{\left(k_{4}\right)}$.
As in the simple model, we shall identify $P\left(R_{n}=0\right)$ to $e^{-\mu}$, where

$$
\mu=\sum_{\mathbf{k}, \mathbf{h}} P\left(\left\{\theta_{\mathbf{k}, \mathbf{h}}=1\right\}\right)
$$

The estimate of $\mu(n)$ leads to

$$
\begin{equation*}
\mu(n) \sim \gamma \mathfrak{s}(n, K) n^{1 / 3} \quad \text { when } n \text { tends to infinity } \tag{10}
\end{equation*}
$$

where $\mathfrak{s}(n, K)$ denotes the 4 -cubes representation coefficient $\rho(n, K) / K^{3}$.
We thus shall use the following estimate:

$$
\begin{equation*}
P\left(R_{n}=0\right) \asymp \exp \left(-\gamma \mathfrak{s}(n, K) n^{1 / 3}\right) \tag{11}
\end{equation*}
$$

5.3. The size of the likely largest exception. Let $\alpha \geq 1$. We first obtain the following properties of the function $\mathfrak{s}(k, K)$:

If $p \equiv 2 \bmod 3$,

$$
\min _{n} \mathfrak{s}\left(n, p^{\alpha}\right)=1-\frac{1}{p^{3}}
$$

If $p \equiv 1 \bmod 3$, let us write $4 p=a^{2}+27 b^{2}$ with $a \equiv 1 \bmod 3$. We then have

$$
\begin{equation*}
\min _{n} \mathfrak{s}\left(n, p^{\alpha}\right)=1-\frac{27|b|+5 a+12}{2 p^{2}} \tag{12}
\end{equation*}
$$

We now compute, for each residue k modulo 63 ,

$$
\mathfrak{s}_{k}=\min _{n \equiv k}^{\operatorname{mim}_{K \geq 1} 63} \mathfrak{s}(n, K)
$$

A way to estimate the probable size of the last exception in each class modulo 63 is to locate it where $P\left(R_{n}=0\right)$ becomes smaller than $63 / n$.

Using estimate (11), we shall just compute the value of n for which $\exp \left(-\gamma \mathfrak{s}_{k} n^{1 / 3}\right)$ and $63 / n$ are equal. Let us denote

$$
\begin{align*}
\mathfrak{a} & :=\min _{(K, 21)=1} \mathfrak{s}(n, K) \\
& =\prod_{p \equiv 2}\left(1-\frac{1}{p^{3}}\right) \prod_{p=1} \prod_{p>7}\left(1-\frac{27|b|+5 a+12}{2 p^{2}}\right) \tag{13}\\
& =0.64919 \cdots ;
\end{align*}
$$

then

$$
t_{k}:=\min _{\substack{\alpha \equiv k \geq 1 \\ n \equiv \bmod 9}} \mathfrak{s}\left(n, 3^{\alpha}\right),
$$

and

$$
s_{k}:=\min _{\substack{\alpha \equiv k \geq 1 \\ n \equiv \bmod 7}} \mathfrak{s}\left(n, 7^{\alpha}\right)
$$

The value of t_{k} and s_{k} are listed below.

k	0	± 1	± 2	± 3	± 4
t_{k}	2	$16 / 9$	$10 / 9$	$4 / 9$	$1 / 9$

k	0	± 1	± 2	± 3
s_{k}	$594 / 343$	$48 / 49$	$54 / 49$	$27 / 49$

This leads to Table 13, which gathers for each class modulo 63 the values of $u_{k}=$ $t_{k_{1}} s_{k_{2}}$, where $\left|k_{1}\right| \leq 4,\left|k_{2}\right| \leq 3, k \equiv k_{1} \bmod 9$ and $k \equiv k_{2} \bmod 7$.

Table 13. The values of $u_{k}=t_{k_{1}} s_{k_{2}}$.

$k_{2} \bmod 7$	$k_{1} \bmod 9$	0	± 1	± 2	± 3
± 4					
0	$1188 / 343$	$1056 / 343$	$660 / 343$	$264 / 343$	$66 / 343$
± 1	$96 / 49$	$256 / 147$	$160 / 147$	$64 / 147$	$16 / 147$
± 2	$108 / 49$	$96 / 49$	$60 / 49$	$24 / 49$	$6 / 49$
± 3	$54 / 49$	$48 / 49$	$30 / 49$	$12 / 49$	$3 / 49$

To take into account the distribution irregularities of the cubes in arithmetic progressions, we are led to consider

$$
\mathfrak{s}_{k}:=\min _{n \equiv k} \operatorname{mim}_{K \geq 1} 63 \text { s }(n, K)=\mathfrak{a} u_{k},
$$

for any k. This gives the size of the integer n_{k} for which $\exp \left(-\mathfrak{s}_{k} \gamma n_{k}{ }^{1 / 3}\right) \asymp 63 / n_{k}$.

Table 14. Size of the last exception n_{k} given by the arithmetic model.

$k \bmod 7$	$k \bmod 9$	0	± 1	± 2	± 3
0	4.78 e 6	7.71 e 6	4.9 e 7	1.50 e 9	2.07 e 11
± 1	4.57 e 7	7.19 e 7	4.21 e 8	1.17 e 10	1.48 e 12
± 2	2.90 e 7	4.57 e 7	2.72 e 8	7.69 e 9	9.86 e 11
± 3	4.02 e 8	6.22 e 8	3.45 e 9	8.91 e 10	1.05 e 13

These estimates can be compared with the largest exceptions found in each class modulo 63 given in Table 15.

These results show at least that our probabilistic model fits very well with our computation. However we remark that the last exception found in the class 47 modulo $63(2 \bmod 9,-2 \bmod 7)$ is greater than the corresponding value given in Table 14. As a matter of fact it is in this class that we observe the largest ratio between two consecutive exceptions.

Table 15. The last found exceptions in the residue classes modulo 63

$\begin{array}{ll} \bmod 7 & \bmod 9 \\ \hline \end{array}$	0	1	2	3	4
0	587286	1410346	23375702	508517814	96127145590
1	40748310	15607054	108609194	5134614906	788129237722
2	7712154	14621266	118905194	5192800356	647984206102
3	396953532	252716950	1761425102	41918435499	5284099948018
-3	188204580	198367831	1155472427	44322060990	6496802093380
-2	11919591	11066914	326262620	3403279794	515338220164
-1	19913382	43921828	193830356	3806305950	907751255494
$\bmod 7 \bmod ^{\operatorname{ma}}$		-1	-2	-3	-4
0		1294370	27750562	694539132	83593932170
1		32898230	127378987	6125088390	936140172206
2		23933051	185805790	3832335222	913105904972
3		230528546	1148123959	66945773058	6021018973490
-3		505945682	4045088338	75377772852	7373170279850
-2		18900530	92241196	3879539340	706796978900
-1		19566665	133245286	5103923460	1427500392170

6. Sums of five cubes

It is well-known since Linnik [9] (1943) and Watson [12] (1951) that every sufficently large integer is a sum of 7 positive integral cubes. McCurley [3] in 1984 gave an effective version of this result but his bound is too large, $\exp (\exp (13.97))$. F . Bertaut, O. Ramaré and P. Zimmermann [1] improved this result in some particular arithmetic progressions. By combining the greedy ascent method with the previous results for sums of 4 cubes, we easily derive the following theorem.
Theorem. Every integer in the interval $\left[1290741,10^{16}\right]$ is a sum of five nonnegative integral cubes.
Proof. We shall establish the result for each class modulo 9.
In a first step, we simply verify on a computer that every integer in the interval [$1290741,8 \cdot 10^{10}$] is a C_{5} integer. This is done in the following way. To test the interval $\left[a, b\left[\right.\right.$, we compute two vectors, one with all C_{2} integers from 0 to b, and one with C_{3} integers from 0 to a variable bound $M(b)$. Indeed, the average number of representations of an integer n as a sum of 5 cubes is about $\gamma n^{2 / 3}$, so every large integer has a representation as $\mathrm{C}_{2}+\mathrm{C}_{3}$, the C_{3} integer being relatively small. We then add the two vectors until the interval is completely represented. This took about 120 hours on a DEC Alpha.

In a second step, we use special ranges of C_{4} integers in 4 classes modulo 9 observed beyond the last apparent exception found. In the class 0 , this range has been enlarged for the special need of this theorem.

We have

- every $n \in\left[4 \cdot 10^{8} ; 4.5 \cdot 10^{11}\right]$ and congruent to $0 \bmod 9$ is C_{4},
- every $n \in\left[4.5 \cdot 10^{10} ; 5.3 \cdot 10^{11}\right]$ and congruent to $3 \bmod 9$ is C_{4},
- every $n \in\left[7.6 \cdot 10^{10} ; 8.8 \cdot 10^{11}\right]$ and congruent to $6 \bmod 9$ is C_{4},
- every $n \in\left[4.1 \cdot 10^{9} ; 4.5 \cdot 10^{10}\right]$ and congruent to $7 \bmod 9$ is C_{4}.

By adding successively to these ranges a cube k^{3} for $1 \leq k \leq K$, we obtain large ranges of C_{5} integers. The union of these successives ranges is still an interval when K is not too large. This leads to the following technical lemma.
Lemma. If every integer $n \in[a, b](b-a \geq 27)$ congruent to $i \bmod 9$ is C_{4}, then (i) every $n \in\left[a, a+\frac{(b-a)^{3 / 2}}{27}\right]$ congruent to $i \bmod 9$ is C_{5},
(ii) every $n \in\left[a, a+\frac{(b-a)^{3 / 2}}{27}\right]$ congruent to $i+1 \bmod 9$ is C_{5},
(iii) every $n \in\left[a, a+\frac{(b-a)^{3 / 2}}{27}-\frac{(b-a)}{3}\right]$ congruent to $i-1 \bmod 9$ is C_{5}.

The proof is elementary, and is left to the reader.
When using the previous ranges in the classes 3 and 6 modulo 9 , we get

- every $n \in\left[4.5 \cdot 10^{10} ; 1.2 \cdot 10^{16}\right]$ congruent to $2,3,4 \bmod 9$ is C_{5},
- every $n \in\left[7.6 \cdot 10^{10} ; 2.6 \cdot 10^{16}\right]$ congruent to $5,6,7 \bmod 9$ is C_{5}.

Finally, when using the previous range in the class 0 we obtain

- every $n \in\left[4 \cdot 10^{8} ; 1.1 \cdot 10^{16}\right]$ congruent to $0,1,8 \bmod 9$ is C_{5}.

These results combined with the results of the first step clearly establish the theorem.

Appendix SIMULATIONS FOR SUMS OF FOUR PSEUDO-CUBES

Abstract

We present here some simulations for sequences of pseudo-cubes, i.e. for pseudo-random sequences which mimic the behaviour of sequences of cubes. Our aim is to observe experimentally the distribution of the largest number which is not a sum of four pseudo-cubes. Furthermore, we are interested in the distribution of the gap between the ultimate exception and the previous one.

A.1. Construction of pseudo-cubes

We follow the Erdős-Rényi model described in [1]. For modeling sequences of cubes, we have to generate a sequence $\left(\xi_{n}\right)_{n \geq 1}$ of independent Bernoulli random variables such that

$$
P\left(\xi_{n}=1\right)=\alpha_{n} \quad \text { and } \quad P\left(\xi_{n}=0\right)=1-\alpha_{n}
$$

where $\alpha_{n}=1 /\left(3 n^{2 / 3}\right)$. This leads to a sequence of pseudo-cubes denoted by $\left(\nu_{l}\right)_{l \geq 1}$. Almost surely, by the Borel-Cantelli Lemma, only a finite number of integers will not be represented as sums of four terms of pseudo-cubes (ν_{l}). For this sequence, we experimentally note that the likely largest number n_{0} which is not sum of four terms of this sequence $\left(\nu_{l}\right)$ will be very large and requires too much time to be computed. So instead we take $\alpha_{n}=2 /\left(3 n^{2 / 3}\right)$; this choice makes the number n_{0} significantly smaller and enables us to perform many trials. Furthermore, it does not affect the fundamental behaviour of our model. Indeed, as it can be seen in subsection 5.1, the increase in α_{n} only leads to replacing in (3) the factor γ by 16γ. The value of n_{0} is then reduced by a factor of 10000 .

The concrete realization of the sequence $\left(\nu_{l}\right)$ of pseudo-cubes is done as follows. For each n, we take a random number x between 0 and 1 . The value of ξ_{n} is chosen to be 1 or 0 , depending on whether x lies in $\left[a_{n}, b_{n}\right] \subset[0,1]$ or not.

For constructing the interval $\left[a_{n}, b_{n}\right]$, we randomly choose a point denoted by a_{1} in $[0,1]$. We then compute the value of α_{n} and set

$$
\left[a_{n}, b_{n}\right]= \begin{cases}{\left[a_{1}, a_{1}+\alpha_{n}\right]} & \text { if }\left(a_{1}+\alpha_{n}\right) \leq 1 \\ {\left[a_{1}, 1\right] \cup\left[0, a_{1}+\alpha_{n}-1\right]} & \text { if }\left(a_{1}+\alpha_{n}\right)>1 .\end{cases}
$$

A.2. Distribution of the five last exceptions

We generated 4500 sequences of pseudo-cubes in the interval $\left[1, N=10^{6}\right]$. For each sequence, we computed all sums of 4 terms of this sequence and noted the five apparent largest numbers which are not represented, denoted by $n_{4}<n_{3}<n_{2}<$ $n_{1}<n_{0}$. From the last observed exception n_{0}, we test all the interval [$n_{0}, 50 \times n_{0}$] in order to morally convince ourselves that it is the likely last exception. We get the results shown in Table A-1.

We first notice that densities are not symmetric. The histograms and distribution functions seems to show that we have for $n_{i}, i=0, \ldots 4, \Gamma$-distributions with two parameters; the experimental agreement is rather good but we have no theoretical reason supporting such a Γ-distribution. The figures below show in the first column the empirical distribution functions for n_{0} and n_{1}, and in the second column the histograms compared with the density of a Γ-distribution.

Table A-1. Five last exceptions $n_{i},(i=0 \ldots 4)$ for sums of 4 pseudo-cubes.

Statistics	n_{0}	n_{1}	n_{2}	n_{3}	n_{4}
minimum	56	50	48	44	42
lower quartile	7011	4926	4006	3451	3118
median	17222	12994	10951.5	9852.5	8979
mean	26861.9	20478.34	17587.65	15906.79	14656.75
upper quartile	35741.5	27328	23634.5	21159	19457
maximum	190752	181169	171348	138612	134196
variance	840460536	510788421	390318881	330451800	287465045
standard deviation	28990.7	22600.63	19756.49	18178.33	16954.79

Figure A-1. Empirical distribution functions and histograms of n_{0} and n_{1} for sums of 4 pseudo-cubes.

The density of the Γ-distribution with parameters p and θ is given by

$$
\begin{equation*}
f(x ; p, \theta)=\frac{1}{\Gamma(p) \theta^{p}} x^{p-1} \exp \{-x / \theta\} \mathbb{1}_{\{x \geq 0\}}, \quad \theta>0 \tag{1}
\end{equation*}
$$

Let $\mathbb{X}=\left(X_{1}, X_{2}, \ldots, X_{n}\right)^{T}$ be a random vector in \mathbb{R}^{n}, where $X_{i}(i=1, \ldots, n)$ are independent and identically distributed with distribution function F and density function f. We denote by x_{i} the realizations of $X_{i}(i=1, \ldots, n)$. Estimates of p

Table A-2. Parameters of the gamma distribution (p, θ) for the five last exceptions for sums of four pseudo-cubes.

Parameter	n_{0}	n_{1}	n_{2}	n_{3}	n_{4}
p	0.88021	0.86390	0.82823	0.77149	0.79989
θ	28892.120	22500.829	20123.119	19994.318	18432.074

and θ can be obtained by finding the maximum of the likelihood function

$$
L(\mathbb{X} ; p, \theta)=\prod_{i=1}^{n} f\left(x_{i} ; p, \theta\right)
$$

This gives the following numerical estimates.

A.3. Distribution of n_{0} / n_{1}

Figure A-2 shows the ratio $n_{i} / n_{0}(i=1,2)$ as a plotted function of n_{0}. We clearly observe that when n_{0} increases, the minimum of (n_{0} / n_{1}) increases also and is bigger than 0.1 with extremely few exceptions, which means that the last exception is almost always smaller than ten times the previous one.

We also observe that the distribution of $Z=\left(n_{0} / n_{1}\right)-1$ looks like a Γ-distribution with two parameters. By (1), the density of $X=n_{0} / n_{1}$ is then

$$
f(x ; p, \theta)=\frac{1}{\Gamma(p) \theta^{p}}(x-1)^{p-1} \exp \{-(x-1) / \theta\}, \quad x \geq 1, \quad \theta>0
$$

In Figure A-3 we have plotted the histograms compared with the density of a Γ-distribution.

From this, we have computed in Table A-3 under the hypothesis of a Γ-distribution for Z with estimated parameters p and θ, the probability that $X=n_{0} / n_{1}>k$ for $k=5, \ldots, 10$.

More simulations have been performed around this subject and can be seen in [2]. From this, it appears that a large multiplicative gap between the two last exceptions for sums of four cubes seems to be very unlikely. Therefore this appendix supports,

Figure A-2. Ratio $n_{i} / n_{0}(i=1,2)$ as a function of n_{0} for sums of four pseudo-cubes.

Figure A-3. Density of n_{0} / n_{1} observed and estimated for sums of four pseudo-cubes.

Table A-3. Probability $\left\{X=\frac{n_{0}}{n_{1}} \geq k\right\}$ for $k=5, \ldots, 10$.

$X=\frac{n_{0}}{n_{1}}$	gamma (p, θ) $p=0.37510$ $\theta=0.65032$
$\widehat{\mathrm{P}}(X \geq 5)$	$2.6531 \cdot 10^{-4}$
$\widehat{\mathrm{P}}(X \geq 6)$	$5.0347 \cdot 10^{-5}$
$\widehat{\mathrm{P}}(X \geq 7)$	$9.7559 \cdot 10^{-6}$
$\widehat{\mathrm{P}}(X \geq 8)$	$1.9187 \cdot 10^{-6}$
$\widehat{\mathrm{P}}(X \geq 9)$	$3.8155 \cdot 10^{-7}$
$\widehat{\mathrm{P}}(X \geq 10)$	$7.6530 \cdot 10^{-8}$

to some extent, the choice of the factor 10 in the method used in the body of this paper for determining the likely largest number which is not a sum of four cubes.

References to Appendix

[1] Erdős, P. and Rényi, A. (1960). Additive properties of random sequences of positive integers. Acta Arith., vol. 6, p. 83-110. MR 22:10970
[2] Purnaba P. Étude de divers problèmes statistiques liés aux valeurs extrèmes, (1997), Thèse soutenue à l'université Bordeaux I.

References

\rightarrow F. Bertault, O. Ramaré, P. Zimmermann, "On sums of seven cubes", Math. Comp. 68 (1999), 1303-1310.
[2] J. Bohman, C.E. Fröberg, "Numerical investigation of Waring's problem for cubes", BIT 21 (1981), 118-122. MR 82k:10063
[3] K.S. McCurley, "An effective seven cube theorem", J. of Number Theory, 19 (1984), 176-183. MR 86c:11078
[4] H. Davenport, "On Waring's problem for cubes", Acta Math., 71 (1939), 123-143. MR 1:5c
[5] J-M. Deshouillers, F. Hennecart, B. Landreau, "Sums of powers: an arithmetic refinement to the probabilistic model of Erdős and Rényi", Acta Arithmetica. 85 (1998), 13-33. CMP 98:13
[6] L. Dickson, "All integers except 23 and 239 are sums of eight cubes", Bull. Amer. Math. Soc. 45 (1939), 588-591. MR 1:5e
[7] P. Erdős, A. Rényi, "Additive properties of random sequences of positive integers", Acta Arith., 6 (1960), 83-110. MR 22:10970
[8] S. Janson, T. Luczak, A. Rucinski, "An exponential bound for the probability of nonexistence of a specified subgraph in a random graph", Random Graphs' 87 (Poznan, 1987), Wiley Chichester 1990, 73-87. MR 91m:05168
[9] U.V. Linnik, "On the representation of large numbers as sums of seven cubes", Mat. Sb., 12 (54) (1943), 218-224. MR 5:142e
[10] F. Romani, "Computations concerning Waring's problem", Calcolo, 19 (1982), 415-431. MR 85g:11088
[11] R.C. Vaughan, "The Hardy-Littlewood method", Cambridge University Press (1981). MR 84b:10002
[12] G.L. Watson, "A proof of the seven cube theorem", J. London Math. Soc. (2), 26 (1951), 153-156. MR 13:915a
[13] A.E. Western, " Computations concerning numbers representable by four or five cubes", J. London Math. Soc. (2), 1 (1926), 244-251.

Mathématiques Stochastiques, Université Victor Segalen Bordeaux 2, F-33076 Bordeaux Cedex, France

E-mail address: J-M.Deshouillers@u-bordeaux2.fr
A2X, Université Bordeaux 1, F-33405 Talence Cedex, France
E-mail address: hennec@math.u-bordeaux.fr
E-mail address: landreau@math.u-bordeaux.fr
Mathématiques Stochastiques, Université Victor Segalen Bordeaux 2, F-33076 Bordeaux Cedex, France

[^0]: Received by the editor January 20, 1998.
 1991 Mathematics Subject Classification. Primary 11Y35; Secondary 11P05, 11K99.
 Ce travail a été réalisé au sein du laboratoire A2X, UMR CNRS-Bordeaux $1 \mathrm{n}^{\circ} 9936$, avec le soutien de l'Université Victor Segalen Bordeaux 2.

 The work in the Appendix was supported by universities Bordeaux 1 and 2, CNRS (UMR 9936) and a scholarship from the French Government.

